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Abstract—Improved theoretical expressions for Nusselt numbers are obtained for cross flow of
liquid metals through rod bundles, by applying inviscid flow analysis [4, 5]. The theoretical derivations
are based upon the assumption that, for a rod located in the interior of a bundle, the circumferential
variations of both the tube-wall temperature and the hydrodynamic potential can be expressed by
cosine-type distributions. The former assumption is deduced from the experimental observations of Hoe
et al. [6], under conditions where the heat flux was apparently close to uniform, and the latter is
postulated on the basis of theoretical considerations. With these assumptions, the following expression
for the Nusselt number, similar to that of Cess and Grosh [5], becomes

Nug = 0-958 (¢,/ D)} (Pe)%Vmax (V| Vaat.

The above expression predicts Nusselt numbers which agree well with experimental results previously
obtained at the Brookhaven National Laboratory [6, 9].

A theoretical method of determining values of the parameter, ¢,/D, the normalized hydrodynamic
potential drop, is also presented. The results agree well with those obtained experimentally by Cess and
Grosh [5]. An analytical expression for ¢,/D is obtained by using mathematical functions originally
developed by Howland and McMullen [7]. The theoretical values of ¢,/D for flow across two typical
tube-bank geometries, i.e. square spacing and triangular equilateral spacing, were obtained with the

aid of a high-speed digital computer. The numerical results are presented in tabular form.

NOMENCLATURE Ti, uniform upstream temperature.
Azs 11, Bys, coeflicients as defined by equation °F;
an; v, uniform upstream velocity, ft/s;
Co, specific heat at constant volume, Vs, fluid velocity on the surface of a
Btu/lb degF; cylinder, ft/s;
D, diameter of a cylinder, ft; Vmax, shell-side fluid velocity across tube
Nup, over-all Nusselt number, hpD/k, bank and based on minimum flow
dimensionless; area, ftfs;
Nug, over-all Nusselt number, h,D/k, a, co-ordinate distance between the
dimensionless; centers of cylinders, ft;
P, pitch, ft; c, cot ={ as defined by equation (12c);
Pe, over-all Peclet number, pC,¥V D/k, 2 (=
dimensionless ; erfc x, I — v L exp (— A%) da;
(P€)vyy,  Over-allPecletnumber, pCoV max D/ Jus polynomials as defined by equation
k, dimensionless; (12b);
Ry, radius of a cylinder, ft; h, average heat-transfer coefficient
T, temperature, °F; for a given tube, Btu/h f2
T: . temperature excess, 7 — T3, degF; degF;
T, averaged  temperature  excess, hy, over-all heat-transfer coefficient
degF; based on a specified surface

* This work was performed under the auspices of the ) temperature, Btu/h ft* degF;
U.S. Atomic Energy Commission. 1 v —1;
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k, thermal conductivity, Btu/h ft
degF;

n, integer;

P, co-ordinate distance between the
centers of cylinders in different
rows, ft;

q, co-ordinate distance between the
rows of cylinders, ft;

q' rate of heat flow per unit length

of cylinder perpendicular to the
direction of flow, Btu/ft h:

q". surface heat flux, Btu/ft2 h;

r, radial distance, ft;

s integer;

L time, s;

t'r, gy velocity components in r and 6
directions;

complex functions as defined by
equations (7) and (8);

, the distance along the diameter of
cylinder measured from the for-
ward stagnation point, ft;

Greek symbols

Say, coefficient as defined by equation
(10);

B. angle measured from the forward
stagnation point on cylinder, rad;

3, parameter;

L, Lo complex number as defined by
equation (9);

8, angle, radian or degree:

8,, temperature excess at B == n/2,
degF;

8o, surface temperature excess as de-
fined by equation (2), degF;

ba, temperature as defined by equation
(2, °F;

Om. average surface temperature excess,
degF;

K, thermal diffusivity, ft?/h;

A, diameter-to-pitch ratio, D/P, di-
mensionless;

© viscosity of fluid, Ib/h ft;

Uty absolute fluid evaluated at aver-
age film temperature, 1b/h ft;

, = 3-1416. . . .;

P density of fluid, 1b.,/ft3;

Pfs fluid density evaluated at average

film temperature, iby,/ft3;

CHIA-JUNG HSU

Pis modulus of the complex number,
z, as defined by equation (9);

o, temperature ratio as defined by
equation (3);

D, hydrodynamic potential function;

D, hydrodynamic potential on the
surface of a cylinder;

@, unit hydrodynamic potential func-
tion, ¢/ —V;

bs, unit hydrodynamic potential on
the surface of a cylinder;

b1, unit hydrodynamic potential at the
rear stagnation point on a cylinder;

v, hydrodynamic stream function;

0, unit hydrodynamic stream func-
tion, ¥/—V;

w, parameter.

INTRODUCTION

THERE have been very few investigations dealing
with the cross flow of liquid metals through
staggered rod bundles. To the author’s know-
ledge, there have been but one analytical study
and three experimental studies reported in the
literature. In the only published theoretical study,
Grosh and Cess [4], by assuming inviscid po-
tential flow, derived theoretical expressions for
the Nusselt numbers for different surface
temperature conditions of a single cylinder
placed normally to the direction of flow. These
results were then extended to cover the case of
flow across a rod located in a bundle [5]. Their
theoretical Nusselt numbers fell approximately
10-20 per cent below the experimental values
reported by Hoe, Dropkin and Dwyer [6]. The
purpose of the present study was to extend the
analytical treatment of the case of heat transfer
to liquid metals flowing across rod bundles.

In the present paper, a theoretical method of
estimating values of ¢,/ D will be first presented.
The extension of the results for a single cylinder
to one in a rod bundle requires a knowledge of
the hydrodynamic potential drop, ¢,/ D, between
the front and rear stagnation points of the rod.
The solution of Laplace’s equation satisfying
the appropriate boundary conditions is utilized
to calculate this quantity. The expression for the
hydrodynamic potential drop, ¢,/D, is derived
by making use of a mathematical function pro-
posed by Howland and McMullen many years
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ago 7). Theoretical values of ¢,/D have been
obtained for two typical tube-bank geometries,
l.e. tubes with equilateral triangular spacing and
with square spacing. The entire computation was
carried out with the aid of an 1BM 7090 com-
puter. The calculated results are presented in
tabular form, These calculated values of ¢,/D
have been incorporated in the theoretical
expressions for the Nusselt number, and com-
parisons are made with available experimental
results.

Also, in the present paper, the derivation of
the Nusselt number, Nug, for the case of a cosine
surface-temperature distribution is presented.
This derivation is based upon the assumption
that the circumferential variations of both the
tube-wall temperature and the hydrodynamic
potential on the surface of a cylinder located
in the interior of a bundle can be represented by
cosine-type distributions. It will be shown that
this new expression predicts Nusselt numbers
which agree well with the available experimental
results.

PREVIOUS STUDIES
A. Analytical
The only analytical study which dealt with the
heat transfer of low Prandtl number fluids
flowing past a single rod or through rod bundles
is believed to be that due to Grosh and Cess
(4. 5]. By using the following assumptions:

(a) Constant property, non-dissipative flow.

{b) Steady two-dimensional temperature and
velocity fields.

{c) Incompressible, non-viscous and irro-
tational flow.

(d) Negligible eddy transport of heat com-
pared to molecular conduction.

(¢) No contact resistance at the solid-liquid
interface.

(f) The hydrodynamic potential distribution
on the surface of a cylinder located in a
rod bundle is linear with respect to %, the
distance along the diameter of the cylinder

measured from the forward stagnation
point, i.e.

¢ = ¢ (X/D). )

{g) Interaction of the thermal boundary
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layers of the cylinders in a rod bundle is
negligible.

They derived several different expressions for
Nusselt number by prespecifying the thermal
condition on the surface of a rod. By assuming
the variation of the surface temperature to be
of the form:

8y (B) = O — Gacos B (2)

o = O/ 3)

they obtained the following Nusselt number,
Nu,, for rod bundles:

and

Nug == 0718 (Pe)* (b, D) (1 - ;) (@)
From the experimental results of Hoe ef al. [6],
they further obtained the following expression
for calculating the quantity, o, in equation (4):

o = 0-10 (Pe)?3%, ()

To compare equation (4) with the experimental
results of Hoe et al., Grosh and Cess recalculated
the Nusselt number, Vu;, based upon the defini-
tion of heat-transfer coefficient, /;. given by the
equation:

h{ = q,/ﬂDBm-

The average temperature excess, f,,, was
taken as the arithmetic mean of the nine surface-
temperature readings obtained from thermo-
couples spaced 40° apart on the circumference.
The comparison is shown in Fig. 8.

B. Experimental

The experimental study of heat transfer to
liquid metal flowing across rod bundles was
first conducted by Hoe et a/. [6] at Brookhaven
National Laboratory. They measured local and
over-all heat-transfer coefficients for flow of
mercury under conditions of both wetting and
non-wetting, The range of Reynolds number
covered was from 15000 to 83000. The effect of
the Prandtl number was not investigated. The
rods were arranged in an equilateral triangular
array, for which D/P was 0-727. For a rod located
inside the tube bank, they proposed the follow-
ing empirical expression for the average shell-
side heat-transfer coefficient.

h =116 (DVmax pr/pr)* %
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The circumferential variation of both the local
heat-transfer coefficient and the tube-wall
temperature were also measured. With a Rey-
nolds number range of 15000 to 80000 (corre-
sponding to a Peclet number of 330 to 1760),
it was reported that the local heat-transfer
coefficient varied smoothly from a maximum
value at the forward stagnation point to a mini-
mum value at the rear stagnation point. This
finding revealed that within the Reynolds number
range covered by the experiment, the eddy
transport of heat due to the separation of
boundary layer and the turbulent wake is not
very significant in comparison to the molecular
conduction of heat.

A later experimental study at Brookhaven of
the heat transfer characteristics of liquid metals
in cross flow through a rod bundle is that due to
Rickard, Dwyer and Dropkin [9]). In this, both
the local and tube-average coefficients were
measured for the flow of mercury normal to a
staggered rod bundle. The bundle was composed
of sixty 4-in tubes, six wide and ten deep, with
equilateral-triangular spacing and a D/P of 0-73.
The Reynolds number range was 20000 to
200000. The effect of Prandtl number was found
to be the same as that of the Reynolds number.
The results were, therefore, correlated in terms
of the Peclet number, and the following empirical
expression was obtained

Nup = 403 - 0:228 (Pe)0s (6)

Vmax*

Recently, Borishanskii et al. [1] measured local
and average coefficients for flow of liquid
sodium across a staggered rod bundle. Despite
the different material used, their results agreed
quite well with those of Hoe et al. and Rickard
et al. The theoretical expressions for the Nusselt
number obtained in this study will be compared
with the experimental results of Hoe er al.
and Rickard et al. In either case, theoretical
value of ¢,/D obtained in this study will be
incorporated into the theoretical equations.

PRESENT STUDY
A. Theoretical derivation of the hydrodynamic
potential drop, &,/ D
To calculate the Nusselt numbers for cross
flow of liquid metal through rod bundles, it is
necessary to know the value of ¢,/D [5]. This
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term appears in the theoretical expression of
Nusselt number for rod bundles, and it repre-
sents the difference of the normalized hydro-
dynamic potential between the forward and rear
stagnation points of a rod located in the interior
of a rod bundle. An analytical method of
obtaining this quantity will be presented in the
following.

The calculation of ¢,/D requires information
concerning the distribution of hydrodynamic
potential around a rod located in a rod bundle.
The latter information can be obtained by solving
Laplace’s equation for the specified rod bundle
under suitable boundary conditions. Due to
geometrical symmetry, it is only necessary to
determine the potential field inside the shaded
area shown in Fig. 1. The potential distribution
around the circumference of a rod can then be
determined, and eventually the potential differ-
ence between the two stagnation points, @ and
b, can be calculated. For flow normal to the
bundle, as shown in Fig. 1, the distribution of
stream and potential lines can be well approxi-
mated by those for flow across double infinite
rows of cylinders which are in the same geo-
metrical configuration. For the latter case.
Howland and McMullen [7] have proposed a
certain periodic function which may be used to
obtain the distribution of the stream lines. The
following complex analytic functions were
defined by Howland and McMullen:

— Wy == log sinw{ + logsin7 ({, — &) (7)

and
l ds .
Ws =— (s—":T)i azg [(— ])3'1 log sin ‘n’C
—logsinm (L, — O] (8
where
{=zla=p e z=x+1iy, {=(p+ig)a.

®
The distances, a, p and ¢, are explained in Fig. 2.
Both (7) and (8) can be expanded, using the

Maclaurin’s series expansion.
The expansion of ws, for instance, results in

o
ws == {78 + 3 Sanl®
n=0

(10)
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FiG. 1. Schematic representation of flow across tube banks.

with
. (11)
j=1
file) =c¢
4y
po=la+ag] e o
¢ = cot m{,. (12¢)

The polynomials, £, in (12) are

Mo=1+c
file)=2c(l + ey
=201+ (1 +3

fs("") =16(1 + ¥ (315

+ 5254+ 23124 17)
etc.

Starting with these functions, the stream function
for the flow past a double row of cylinders with
equal rectangular spacing (¢ = a) was obtained
by Howland and McMullen as follows:

= — Vrcos ¥

£ Var {3 Agssa [p7 @+ cos (2n + 1)8
n=0

-+ i P} (3Bn cos nb +- sy, sin nb]
n=0

o

+ X Bse [p, 7% sin 256 + % o7 (%8, cos nf
n=0

s=1
-+ e, sin nf)]} (13)

where

el Ay = R[S BB ey — X By Byl
5=0 s=1
(14)

o«
Aapsy = —* X[ 818,00 11 A2sia
s=0

— S %y Bal (15
s=1

Ban = —* X8 3 B+lygy Agsiy + 3 ¥Ban Bas]
s=0 s=1
(16)

* In the original paper, these (—) signs are missing.
Also the numerical values of A’s and B’s given in the
original paper are believed to be in error since they do
not seem to satisfy the given boundary condition, i.e
¥=0,at p, = A

@
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FiG. 2. Co-ordinate system for the potential functions.

and
Asp iz == 2‘/1353 [ AD |
r =
A = 0.n>0 {an
Bon = V B‘” BY =0,n>0
Afr D) o Y 2[2 2518y, 01 AL
50
— X ¥y BE]  (18)
5=1
A g .
BEHD e E Mn Y 2siy, A(a’;-)wl
s 0
. s,an BYL. (19)
5= 1

The B and y coefficients are given in [7].

In the present study, (13) is rearranged into a
more convenient form. Noting that p, = r/q,
a = R,/A, and then collecting the terms with
cos 8, cos (Zn -+ 1)8, and sin 2nd, (13) can be
rearranged to read

Y o — Vrcos 8- VR cos 8 {A; (Ryfr)
\Z(I/RO) [L AZS 12‘S lﬁl ZB% 258]1
s=1
- VR, A 1A2n-L1 A-@ns1) (r/R )—(2n+1)

- ARREL(p[ R )20 A1 [Z Ags o 25180y 11

5=0

= E Bs 2885, 21]} cos (2n - 1) 0
sl

x
-+ VR()/\ {an PTZ" —+ P%" [Z Agsrq 28 H'}’zn
50

- ¥ Bog 28e3p] ]} sin 2n8.

51

(20)

* Cf. footnote on page 435
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Combining (20) with (14), (15) and (16), and
simplifying, yields:

¥ - VR, (i VAsnar ATE[(Rofr)P" 1

n=0

= (r/Ry)2* 1 cos 2n -+ 1) 6}

- 5 {Ban A7 [(Ryfr)
n=1

- (r/Ry)*] sin 2nf}). 2n

(21) is of a form which is amenable to mathe-
matical manipulation. The velocity of fluid on
the surface of the cylinder, for instance. can be
obtained as follows:

o
Crly Ry
WS [Aen 1 A2 (20 1)
n--1
cos (21 ~ 1) H] = 3 |Ban A-20-1(2n) sin 2n8) ;.

n o1

(22)

From (22), it can be shown that the fluid velocity
is zero at the front (6 - #/2) and rear stagnation
points (8 = 37/2).

The present objective is to determine the
potential field. This can be achieved by utilizing
the relationship

a4
D J I d9
cr

Ultimately. the potential field 1s obtained as

(23)

D = VR (X {Aun -1 A2 [(Ry/r)

n=10

= (rfRg M sin 2n -~ 1) 6]

Z‘ lB)" A2 1[(R ln

nl

-= (r/Ry)*") cos 2n8?}). (24)

The distribution of hydrodynamic potential
around a rod located in the interior of a rod
bundle can be calculated using (24). By letting
r == R,. one gets

@, == 2VR, [)E Aoy A sin(2n + 1) 4
n-0

- }:‘, Baon A¥1°1 cos 2nb).

no=1

25)
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The difference in hydrodynamic potential be-
tween the front and rear stagnation points,
¢,/ D, can be found by calculating the difference
of @, at 8 = =2 and 8 == 3=/2. Finally, this is
given by the equation

$/D =2 ij;o(_ D% A2 Agns (26)

where A = }(D/P) and the A’s arec as repre-
sented by (17) and (18). It is not difficult to show
that the infinite series on the right-hand side of
(26) will approach unity when the value of D/P,
“diameter-to-pitch” ratio, approaches zero. This
corresponds to the case when a single cylinder
is placed inside a uniform fluid stream; and,
as expected, (26) reduces to ¢,/D = 2:0.

For a rod bundle with equilateral triangular
spacing, such as that shown in Fig. 3(b), (26) is
still valid. For this case, however, the argument,
¢, must be modified. For this configuration,
p = af2, and consequently,

~+ 7f2) = — i tanh (mq/a@). (27)

The hydrodynamic potential drop, ¢,/D, for
two typical tube bank geometries, as shown in
Fig. 3, was calculated as a function of D/P. The
mathematical computation was performed with
the aid of an IBM 7090. To assure the conver-
gence of the infinite series, the Maclaurin’s series
expansion coefficient was evaluated up to the
25th term. The twenty-five b constants [7], b,
through by, for both cases are tabulated in
Table 1. The convergence of the infinite series

HM.-2D

¢ == cot (inq/a

FLOW

b/

&

{b) BANK 2

EQUILATERAL TRIANGULAR

SPACING
F16. 3. Schematic representation of tube bank geometries.

Table 1. Calculated values of by in (19)

Bank 1 Bank 2
by —3.15335 —3-11452
b, —0-369815 x 10~ 0-847310 x 10-1
by 0780345 x 10-*  —0-174414
be 0-123033 —0271576
by —0-157498 0-326546
by —0-169172 0-320401
b, 0161246 —0242412
be 0140183 —0-126639
by —0-118284 0-169492 x 10~*
Be  —0999332 x 10-1  —0-993702 x 10~
byy 0-883536 x 10— 0-156051
bua 0-806613 x 10-1 0166686
by —0759076 x 10-*  —0-132108
by —0715676 X 10-1  —0-709479 x 10~
brg 0-671093 x 10— 0-994044 x 10~4
by 0629110 x 10~  —0:622787 x 10~
by,  ~0-580763 x 10 0101615
by  —0554786 x 10-1 0-110877
brs 0524518 x 10~ —0-910285 x 10-1
bao 0-498253 x 10-1 0-500030 x 10~
by —0-474955 x 10— 0-135303 x 10~3
bas —0453773 x 10-1  —0-452236 X 10~
bas 0-434224 x 10 0750400 x 10-1
bae 0-416113 x 10— 0-831057 x 10~
by —0399474 x 10 —0-691281 — 10~

was found to be good within the range of D/P
used. The calculated values of ¢,/ D are tabulated
in Table 2.

The comparison of the theoretical hydro-
dynamic potential drop, ¢,/D, calculated in this
study, with that obtained by Grosh and Cess
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Table 2. Theoretical values of the hydrodynamic potential drop, é,/D

Dip &:/D ¢/ D D/p é:/D $./D

(Bank 1) (Bank 2) (Bank 1) (Bank 2)
0-00 2-0000 20000 044 2:3805 2-3381
0-01 2-:0002 2-0002 045 2:4012 2:3557
0-02 2-0007 20006 0-46 2:4227 2-3740
0-03 2-0015 2-0014 047 2-4451 2-3929
0-04 2-0027 20025 048 2-4684 2-4125
0-05 20042 2:0039 0-49 24927 2-4328
0-06 2:0061 2:0056 0-50 2:5179 2:4539
0-07 2-0083 20077 0-51 2-5442 24757
0-08 2-:0108 2:0100 0-52 2-5715 2:4983
0-09 2:0137 2:0127 0-53 2-6000 2-5218
010 2-0169 2-0157 0-54 2:6297 2:5461
0-11 2-0205 2-:0190 0-53 2-6606 2-5713
0-12 2-0245 2-0226 0-56 2-6929 2:5976
0-13 20288 20266 0-57 27265 2:6248
0-14 2:0334 2-0309 0-58 2:7617 2-6531
0-15 2-0385 2:0355 0-59 2:7984 2-6826
016 20439 2-0405 ! 0-60 2-8368 27132
0-17 2:0496 2-0458 0-61 2-8769 2-7452
0-18 2:0558 2:0514 0-62 29189 27785
019 20623 2:0574 063 29630 2:8132
0-20 2-0693 20637 0-64 3-0091 2-8496
021 2:0766 2-:0704 0-65 3-0575 2-8876
022 20844 2-0775 0-66 3-1084 29273
0-23 2:0925 20849 0-67 3-1619 2-9690
0-24 2-1011 20927 0-68 32182 30129
0-25 2:1101 21008 0-69 32776 3-0589
026 21196 2:1094 0-70 3-3402 3-1074
0-27 2-1295 21183 ; 071 3-4064 31587
0-28 2-1398 2-1276 : 072 3-4765 32128
0-29 0-1507 2:1374 1 0-73 35508 3-2702
0-30 21620 2:1475 ' 074 3-6297 33311
0-31 2-1738 2-1580 | 075 37137 3-3960
032 2-1862 2:1690 076 3-8032 3-4652
0-33 2:1990 21804 077 3-8988 3-5393
0-34 2:2124 2-1923 078 4-0013 36189
0-35 2:2264 2-2046 0-79 4-1113 3-7047
036 22409 2-2174 0-80 4-2299 37975
0-37 2:2561 2-2306 081 4-3581 3-8983
0-38 2:2718 2:2444 0-82 4-4971 4-0082
0-39 2-2882 2-2587 0-83 4-6486 4-1288
0-40 23052 2:2734 0-84 4-8143 42617
0-41 2-3229 2-2888 0-85 4-9967 4-4091
0-42 2-:3414 2-3046 0-86 5-1985 4-5737
0-43 2:3605 23211

using analogical methods, is shown in Figs. 4
and 5. From the plots, it is seen that the agree-
ment between the two is almost perfect up to a
D/P ratio of approximately 0-2. Beyond this
value, the two are still in satisfactory agreement.
In the former range of D/P, the tubes are spaced
relatively far apart. For the latter, the tubes are

spaced more closely, and consequently more
experimental error may be expected.

B. Derivation of the theoretical Nusselt numbers

The following derivations for the Nusselt
number, Nu;, are based upon the same assump-
tions used by Grosh and Cess [4, 5]. These



ANALYTICAL STUDY OF HEAT TRANSFER TO LIQUID METALS

45 T T T T T T T T T T T
o)
-0 ~©
40— © __THIS WORK (THEORETICAL) 7

-~---CESS 8 GROSH (EXPERIMENTAL )

35

15 § I | | 1 l I} l 1 1 1 LIJ j

0 Ol 0-2 03 o4 05 06 o7 o8
orP

Fic. 4. Comparison of the values of ¢,/D obtained by
theory and conducting sheet analogy (Bank 2).

assumptions have been listed in the previous
section. The assumption of an inviscid flow is
equivalent to assuming slug flow around a
cylinder. As pointed out by Grosh and Cess,
when the Prandtl number becomes extremely
small, the heat-transfer rate calculated from
viscous flow theory could approach that
calculated by non-viscous theory.

Assumption (d) appears, on the basis of
experimental evidence, to be reasonably valid.
Experimental measurements by both Hoe ef al.
[6] and Borishanskii er al. [1], showed that at a
Peclet number as high as 1800 (Re = 83000),
the local heat-transfer coefficient decreased
gradually from the forward to the rear stagnation
points. In other words, there is no second
maximum of the heat-transfer coefficient at
about 110° from the forward stagnation point,
as there is for non-metallic fluids. This is due
to the high thermal conductivity of liquid metals
which tends to suppress the effect of eddy
transport of heat. For the case of in-line flow
of mercury through a rod bundle, Maresca and
Dwyer [8] also observed that the eddy transport
of heat was not significant until a Reynolds
number of approximately 40000 was reached.

Justification of assumption (f) will be presented
in the later section of this paper.

With the assumptions, the energy equation in
cylindrical co-ordinates can be written as

i aT_Lvo&T_ﬁ AT 16T 1 28
v ra < \wmt et ew @

HM 7 4 [
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and, the equation of continuity and the r, 8
momentum equations can be replaced by the
Laplace equation, i.e.

2d oD | 2D
I‘E’ri i 8_r+7'3_9£:0 (29.1)
or
oY oV 182
where
1 6% od
and
o 1 6d

If the co-ordinates are transformed from r,
6 to ¢ and ¢ [2], the mathematical procedure of
solving (28) and (29) can be simplified. Thus,
after the change of independent variables from
r, 0 to i, ¢, (28) can be transformed to:

oT k [eT & T

A
Geometrically, this transformation maps the
circular cylinder into a flat plate and gives rise
to a flow field with constant velocity, V. As
shown in Fig. 6, the stream lines (b == constant)
and the potential lines (¢ = constant) are
mapped into a set of orthogonal straight lines.

4'5*{"1((1\T‘I‘

4.0~ 00 — THIS WORK (THEORETICAL)

" OO —-~CESS & GROSH (EXPERIMENTAL)

P
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2:0 —
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o 0! 0-2 03 (o) 05 o6 o7 08
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F16. 5. Comparison of the values of ¢,/D obtained by
theory and conducting sheet analogy (Bank 1),
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Fic. 6. Co-ordinate system for mapping of a cylinder into
a flat plate.

If the term representing the conductive heat
transfer in the direction of flow, #2T/0¢?, is
ignored, in comparison to the term representing
the convective heat transfer in the same direction,
¢T/e4, (32) can be further simplified to
or k T

Ve = iCoan 9
(33) is equivalent to the basic differential equa-
tion used by Grosh and Cess in their analysis.

(a) Nusselt number, Nu;, for cosine surface
temperature distribution. If a change in the
temperature variable is made by letting 7" =T
— T3, (33) then becomes

V6T' kK ol
9(#7 - pCv 811[‘2 )

The dependent variable, T, designates the
temperature excess above the approaching
uniform stream temperature, 7.

From Hoe’s experimental measurements, it is
observed that the circumferential distribution of
the surface temperature of a rod located in the
interior of rod bundle corresponds fairly closely
to a cosine distribution. This is illustrated in

(34)
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Tig. 7. where the excess tube-wall temperature is
compared with a cosine curve, for two different
surface heat fluxes. It therefore seems plausible
to express the tube-wall temperature distribu-
tion by the following equation.

T =08, (1 — cos B) (35
where 8, is the temperature excess at g = =/2.
From (1), the distribution of hydrodynamic
potential on the surface of a cylinder can be
written as

b == (d")p(l cos ) = ¢1(l»cosﬁ) (36)

Combining (35) and (36) then gives
T" = (26)/$,) . (37)

It is thus seen that the cosine temperature
distribution around the circumference of a rod
corresponds to a linear temperature distribution
along the surface of a flat plate.

The appropriate boundary conditions for (34)
are then

aty=0,0< ¢ < ¢y T =(20,/$)) ¢

atg=00,0<d < T'=0

(38)

and the solution of (34), with these boundary
conditions, can be obtained by applying Du-
hamel’s theorem to the solution for a constant
surface temperature. It is given as [3],

(39)

T = 4 Q28/8) i erfe s A pCV kSN,

The local surface heat flux is, therefore,

48,
q" ($) = — k(aT"[e)y-0 = % \[(kpCoV )]

(40)

and, the rate of heat flow over the entire cylindri-
cal surface is given by

¢ = VoY) 62 b =

166,

==ty Ttk pCoV)im) 812,
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FiG. 7. Comparison of outside tube-wall temperature with cosine curves.
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FiG. 10. Comparison of the hydrodynamic potential on the surface of a cylinder with cosine curves (Bank 1).

The average temperature excess over the surface
of the cylinder is

, 1
T'm = y Jo 20y /¢) pdd =06, (41)
Therefore, the average heat-transfer coefficient,
ht, is

4 16V
WDT:" T 3D

hy VI(kCopV)/m).

(42)
The expression for Nusselt number, Nug, is
therefore,

h 6
Nu =22 = 0 by /D) @3)

or
Nuy = 0:958 (¢y/D)V2 (Pe)t2.  (44)

In the above derivation, the Peclet number is
based upon the average approaching fluid
velocity, V. However, when dealing with flow
across rod bundles, the Peclet number is usually
based on the average fluid velocity through the
minimum free area, Vyax. These two different
expressions for the Peclet number are related
by the equation

Pe = (Pe)Vmax (V/Vmax)- (45)

Consequently, (44) can be written in the alterna-
tive form:

Nug = 0:958 (¢,/ D)V2 (Pe)Lj2

Vmax

(V/Vmax)'2. (46)

In Fig. 8 (46) is compared with the experi-
mental results of Hoe, Dropkin, and Dwyer [6].

As mentioned earlier, the equation obtained by
Cess and Grosh, equation (4), is also plotted.
The theoretical value of ¢,/ D used for this case
is 3-27. From Fig. 8 it can be seen that the
prediction of Nusselt number by means of (44)
agrees more closely with results of Hoe et al.
It should also be pointed out that no empirical
correlation such as (5) is necessary in using
(44) and (46).

Comparison of (46) with the results of Rickard,
Dwyer and Dropkin [9] is also shown in Fig. 8.
The results of Rickard er al. are those without
gas entrainment. The comparison shows that the
agreement between (46) and the experimental
results is quite good up to a Peclet number of
approximately 2000. For the range where the
Peclet number exceeds 2000, the experimental
results tend to show higher values than the
theoretical predictions. This presumably is due
to the fact that eddy transport of heat is becoming
significant in this range of the Peclet number.
For practical situations, however, the Peclet
number would seldom exceed 5000. (46) to-
gether with the theoretical values of ¢,/D given
in Table 2 are, therefore, useful in making
theoretical predictions.

In deriving (44), it was assumed that the
distribution of hydrodynamic potential on the
surface of a cylinder located in the interior of a
rod bundle could be represented by (36). A
similar assumption was made by Grosh and
Cess in extending their theory for flow past a
single cylinder to that through a rod bundie.
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Table 3. Calculated values of Agn+y in (24)
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1
i DIP = 0-30 l D/P = 050 D/P =070
1 Bank 1 Bank 2 | Bank 1 Bank 2 Bank 1 Bank 2
4, | 10819 1-0755 | 12664 12428 | 17065 1-6350
A, | 20623107 39848x10-5 | 52195x10~*  9-9088x 10~ 56119 <10~  9-9673x 107
Ay | 19023x10-° 6941910720 | 3.6857x10-°  1-6907x 10~ 1-4654 x 10— 1-9673 x 103
A, | 28102210772 9-4984x 1012 | 4-4401x10-°  1-4363x10-* 9:3362x10~7 24403 x 10~
Ay | 4798751075 47691x107% | 5:5648x10-1  5-4977x10°1 | 35031:<10-®  3-3490x 10-3
Au | 8407810717 2944910 | 826701071 1-0375x 1071 | 326651071 209871071
Ay | 12303:-10-3  1-2240x 10 | 8:5657x 1071 8-8824x10-1 | 9:1147x1071*  1-0364x 10-1
A, | 2081410~ 61959x 10 | 13162x10-1%  3-3308x10-1* | 1-0784x 10~  1-3677:10-18
Aip | 31505010 = 24451510 | 1326110720 35987107 | 25875107 67674 107
|

i |

Table 4. Distribution of hydrodynamic potential, ¢s/D, on the surface of a rod located in the interior of a rod bundle

|

D/P = 030 D/P = 0-50 D/P = 070

B, degrees Bank 1 Bank 2 | Bank 1 Bank 2 ‘ Bank 1 Bank 2
0 1-080 1-076 1 1-253 1-:239 I 1-648 1-601

30 0936 0932 i 1-094 1-080 1-467 1-423

60 0-542 0-:539 : 0-645 0-631 } 0913 0-878

90 0-0008 —0-002 } 0-004 —0-008 i 0-009 —0-020
120 - 0-541 -0-541 i —0-638 —0-643 ‘ —0-884 —0-918
150 ---0-937 —~0-931 —1-098 —1-070 , —1:473 ~1-409
180 - 1-082 --1-072 —1:265 —1-215 ! —1-692 —1-506

Theoretical justification of this assumption is
possible using the mathematical expression of
potential distribution on the cylindrical surface
given by (25). The results of the calculation,
carried out with the aid of an IBM 7094 com-
puter, are shown in Table 4 for three different
D/P ratios. Comparisons of these calculated
values of D, with the cosine curves represented
by (36), are shown in Figs. 9 and 10. For low
values of D/P, as can be observed, the distri-
bution of the surface potential, @, is well
represented by (36). 1t can also be noted that the
distribution 1s approximately symmetrical with
respect to the angle § = =/2. At the limit where
D/P approaches zero, the distribution will
become completely symmetrical, as indicated
by (25). This corresponds to the case where a
single cylinder is placed in a uniform-velocity
stream. For larger values of D/P, slight deviation
from (36) occurs. Generally speaking, however,
{36) is a good approximation for the distribution
of the surface potential.

(b) Nusselt number, Nup, for cosine surface
temperature distribution. If the Nusselt number is
based upon a mean value of the local heat-
transfer coefficient, then, from (37) and (40),

T AP
Therefore, the average heat-transfer coefficient
in the [, ¢] domain can be written as

.2
hs VRG] [§ 67 d =

= 44/ [(kCppV)[(=d))].

To convert this to the r, # domain, it is noted that
héy == hp (= D/2).
Hence,

@7

8
hp = hQbynD) = — \/[(kCopVy)/m]
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and the expression for the Nusselt number,
Nup, becomes

hpD 8
Nup =22 = = /[(pCoV DY/K] ($/ DY

or
Nup = 1:437 (¢,/ D)2 (Pe)'/2, (48)

Comparison of (48) with (44) shows that, for the
cosine surface temperature distribution defined
by (35), the numerical values of the two types
of Nusselt numbers can differ by as much as
50 per cent. It should be point out, however,
that Nup has much less practical significance
than does Nu;.

(¢) Nusselt number, Nuy, for constant surface
heat flux. In the analysis given by Grosh and
Cess [4, 5], the Nusselt number, Nuz, correspond-
ing to a constant heat flux from the surface of a
cylinder, was not obtained. Since all experimental
results have been nominally obtained for con-
stant heat flux conditions, the Nusselt number
for this case will be derived. This derivation is
based on a cylinder located in the interior of a
rod bundle, with the assumption of the hydro-
dynamic potential distribution given by (36).

Inasmuch as heat flux is on an area basis, the
expression for heat flux as a function of ¢ can
be written

. ds

d¢
where ¢ is the constant surface heat flux in
the r, # domain. From (36), and also from the
relationship giving the length of arc along the

surface of a cylinder, s = DB/2, ds/d¢ can be
expressed as

& D D
dé ¢ysinf 2v[$ (b — AN

Therefore,

q'(4) =4

very 4D
7 =57 G — P

The solution of (34) for the case in which the
surface heat flux is ¢”'(¢) is given as [3],

(49)

T'($) = ,lc VIkl(=V)] [§q"($ — 8) (d8/v/3). (50)
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Thus,
T (9)
Dl as
= V) ”L VBE =8 =3¢ T )
D [ o
= kv J o [T = (g sin 2wl

&2))

In the above equation, the integral is a complete
elliptic integral of the first kind. Since

$/by = (1 — cos B)/2

the local surface temperature in the r, # domain
can be written as
}'ID
T'6) ~ L= (v
/2 dw
Jo [1 — {1 —cosp)/2}sin?w]*/?"

(52)

The average temperature over the surface of the
cylinder is therefore,

T = %cl—)(x A
7w (7i2 dw d}g
jo .L [1 — {(1 —cosB)/2}sin? w]V/2"

The heat-transfer coefficient, &, based upon the
average surface temperature is then

hy = [(mk+/$) D} [(m pCo V) [ K]V?
¢ T parm 4o dB
L L [1 —{(1 —cospB)/2}sin?w]"?

and hence, the Nusselt number, Nu;, becomes

hD 72 [(pCyV D)/KTV2 () DY/
Nug = o =

k=7 Kisn(B2)dB
where K [sin (8/2)] denotes the elliptic integrai;
this equation can be reduced to
5-5683 +/(Pe) +/(¢:/D)
fr K[sin(B/2)]dB

The integral in the denominator of this equa-
tion was evaluated graphically. The final

(53)

(54)

(35)

g ==

(56)
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FiG. 11. Comparison of theoretical Nusselt numbers
obtained by assuming (a) cosine tube-wall temperature
distribution, (b) constant surface heat flux from tube wall.

expression becomes

Nug = 0-81 (¢,/ D)2 (Pe)l/? 57
or, alternatively, it can be written,
Nug = 0-81 (¢,/ D)2 (Pe)}2, . (V/Vmax).  (58)

For the case in which a single rod is placed
in the fluid stream, a similar derivation can be
followed. For this case, the Nusselt number was
obtained as follows:

78736 (Pey2
 f5 K[sin (8/2)] dB

In Fig. 11, (58) is compared with (46). As can
be scen, the theoretical predictions for the
Nusselt number, using (58), fall somewhat lower
than that calculated from (46). It is theiefore,
apparent that in the experimental investigations
cited, circumferential heat conduction in the
cylinder cannot be completely ignored.

Nut

= 1145 (Pe)2,  (59)

CONCLUSIONS

The results of the present investigation are
summarized as follows:

(1) For potential flow across rod bundles, or
tube banks, the theoretical expression for the
hydrodynamic potential drop, &é,/D, for a
cylinder located in the interior of a rod bundle is
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obtained by utilizing a special mathematical
function originally proposed by Howland and
McMullen. Computation of numerical values of
¢,/ D is made for two typical tube-bank geome-
tries. The results are presented in tabular
form.

(2) By assuming that the circumferential
variation of both the tube-wall temperature and
the hydrodynamic potential can be represented
by a cosine-type distribution, an expression for
Nusselt’s number, Nu;, is obtained by applying
inviscid flow theory. This expression predicts
Nusselt numbers which agree well with the
experimental results.

(3) For a rod located in the interior of the rod
bundle, the distribution of hydrodynamic po-
tential around the cylindrical surface can be
satisfactorily approximated by a cosine-type
distribution.
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Résumé—On a obtenu des expressions théoriques améliorées pour les nombres de Nusselt dans | écoule-
ment transversal de métaux liquides & travers des faisceaux de barres, en appliquant P’analyse en fluide
non-visqueux {4, 5]. Les développements théoriques sont basés sur I"hypothése que, pour une barre placée
a l'intérieur d’un faisceau, les variations circonférentielles de la température de la paroi du tute et du
potentiel hydrodynamique peuvent &tre exprimées par des distributions en cosinus. La premiére hypothése
est déduite des observations expérimentales de Hoe ef al. [6], avec des conditions dans lesquelles le flux
de chaleur était apparemment presque uniforme, et la derniére hypothése est postulée sur la base de
considérations théoriques. Avec ces hypotheses, I'expression suivante pour le nombre de Nusselt,
semblable a celle de Cess et Grosh [5], devient:
Nu = 0,958 ($/ D) (Pe)by ,, (V] Vimat.
L'expression ci-dessus prédit des nombres de Nusselt qui sont en bon accord avec les résultats expéri-
mentaux obtenus précédemment au Laboratoire National de Brookhaven [6, 9]. On a aussi présenté
une méthode théorique de détermination des valeurs du paramétre, ¢,/D, chute de potentiel hydro-
dynamique normalisée. Les résultats sont en bon accord avec ceux obtenus expérimentalement par Cess
et Grosh [5]. On a obtenu une expression analytique pour ¢,/D en utilisant ces fonctions mathématiques
développées originellement par Howland et McMullen [7]. Les valeurs théoriques de ¢,/D pour I’écoule-
ment A travers deux géométries typiques de faisceaux de tubes, c'est 4 dire 'espacement en carrés et
I’espacement en triangles équilatéraux, ont été obtenues a I'aide d’un calculateur numérique a grande
vitesse. On a présenté les résultats numériques sous forme de tableaux.

Zusammenfussung—Durch Anwendung der Analysis reibungsfreier Stromungen [4, 5] erhilt man ver-
besserte theoretische Ausdriicke fiir Nusseltzahlen bei flilssigen Metallen in quer angestromten Rohr-
biindeln. Die theoretischen Ableitungen beruhen auf der Annahme, dass fiir einen Stab im Innern des
Biindels die Umfangsdnderung der Wandtemperatur und des hydrodynamischen Potentials durch eine
kosinusartige Verteilung wiedergegeben werden kann. Die erstere Annahme ist aus den experimentellen
Beobachtungen von Hoe und anderen [6] abgeleitet. Der Warmefluss war dabei nahezu gleichférmig.
Die letztere Annahme erscheint auf Grund theoretischer Beobachtungen gerechtfertigt. Mit diesen
Annahmen ergibt sich, dhnlich wie bei Cess und Grosh [5] folgender Ausdruck fiir die Nusseltzahi:

Nuy = 0,958 (6,/ D} (Pe)ty . (V] Viad}.

Die nach obiger Gleichung errechneten Nusseltzahlen stimmen gut mit kiirzlich in Brookhaven National
Laboratory [6, 9] erhaltenen experimentellen Ergebnissen {iberein. Eine theoretische Methode doe
Werte des Parameters ¢,/D des hydrodynamischen Potentialgefilles zu bestimmen, ist ebenfalls ange-
geben. Die Ergebnisse stimmen gut mit den von Cess und Grosh [5] experimentell erhaltenen iiberein.
Ein analytischer Ausdruck fiir ¢,/D lisst sich mit Hilfe urspriinglich von Howland und McMullen
entwickelter mathematischer Funktionen [7] angeben. Die theoretischen Werte von ¢,/ D fiir die Anstro-
mung zweier typischer Anordnungen der Rohre im Rohrbiindel ndmlich in der Form von Quadraten und
von gleichseitigen Dreiecken wurden mit Hilfe eines Hochgeschwindigkeitsdigitalrechners erhalten. Die
numerischen Ergebnisse sind in Tabellenform wiedergegeben.

Anuoramusa-—ila ocuose amanusa HeBA3KOro tedenus (4, 5] momydensl HOBHIE TeOpETUUECKIe
Bhipamenna vuced HyccenbTa HpPH I10MEPEYHOM TEYSHHMH HIIKMX METAII0B Hepes IIyHKu
crepneit, TeopeTitueckue REIBOIBI OCHOBAHB HA JIOIWYNISHUY, 9TO [ CTEPHHHA, DACIIOJNOHEH-
HOTO BHYTPU NYyYKa, H3MEHEHHE II0 TePUMEeTPY TeMIepaTypbl CTeHKH TPyOs M TUApoxuHa-
MHYeCKOro MOTeNINANa BHIPAMKAETCH KOCHHYCOIAAIBHBIM pacmpeienenueM. ITo naldxozenue
BHIBEIEHO M3 OKCIepuMeHTanbHbx Hafmomenuit Xoy u gp. [6] B ycaoBuax, KOTAa TeMmIOBO
OTOK GHIT SIBHO OJMB0K K OTHOPOIHOMY; IOCIE[Hee MOCTYJANPYeTCA Ha OCHOBE TeopeTive-
crkoro anaamaa. [lpm TakuUX MONMYMIEHHAX IMOIMyvaeM Cilefyloumlee BHPAKeHUe AIA HHCTA
Hyccenpra, nopobuoe noxyyenHoMy leccom u I'pontem [3]:
Nup = 0,958 (4,/D)} (Pe)by_  (V[Viat.

DTo BHIpaMteHUe AAeT 3HAUeHUA ulces HyccenbTa, KOTOphE XOPOLIO COTIACYIOTCH € AKCIEpH-
MEHTAJbHHIMM Pe3yNbTaTaMH, HOTy4YeHHEIMU panee B HamuonanwHolt maGoparopuu Bpykxe-
sena [6, 9].

Taxmie NPENCTABNIEH TeOpeTHYeCKuil MeToj] onpefefeHns 3uavenntt napamerpa ¢,/D u
nepenajga TUAPORMHAMHYECKOr0 MOTeHIUATA. PesynbrTaTel XOpPOIO COTIACYIOTCH € JKCTepH-
smentaapheiMu ganubvu Hecea u Tpowma [5]. Uenonbsys marematudeckue QyHKUMU, TePBO-
HAYANBHO BHBeleHHHE XayideuzoM u Maw-Miommenom [7], Halileno aHaJIMTUUYECKOE
phipasenne gad  ¢,/D. G momombio  GeicTpofeiierByiomell IWPPOBON  BHMHCIMTENLHOM
MAlIMHBL TOJYYeHH TeopeTHYecKHe sHadeHud ¢,/D ana Tedenua depes 1Ba  OOBIYHOTO
puga  myuka TpyG: IO KBajparaM U paBHOOeIpeHHBIM TpeyrojphukaMm. “ncnewnie

Pe3yILTATH NpefCcTaBIeHs B BHAe Tabauu.



